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LOP-G Orbit Configurations
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• Proposed >$800M in FY19 budget
– ISS lifetime cost >$100B
– Recall “Constellation” mission from GWB era

• How much volume allocated for science?
• What is the balance between different scientific 

disciplines?
• What is the available spacecraft infrastructure?
• Could BFR developments change the phasing plan?
• When will the AO’s be released?

• First order evaluation of science proposals
Opportunity vs. Opportunistic

Programmatic Review of LOP-G
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JPL BEC & AI

Quantum Theory explains “Atomic Scale” physics

Fundamental Physics Exploration Enabled by 
Quantum Optics
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Quantum Entanglement:
Multiple particles, 
one wavefunction

Recent experimental results prove quantum 
wavefunctions can extend 1000+ km

Open Questions in Science:

• Does propagation through a changing 
gravitational potential result in a measurable 
change to an entangled quantum state?

• If a change in the quantum state is 
measured, what does that tell us about 
spacetime?

GSFC

Classical Physics/General Relativity explains “Large Scale” physics

JPL GYPSY

ISS Mission proposal (arXiv:1703.08036v2  [quant-ph]  26 Apr 2017)

2016 & 2017

1

2

3



Quantum Fidelity and Coherence
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Compute Fidelity7Entangled State 
Production Rate 

= R pairs/s

Multiple 
Measures of 

Particle A
~ Matrix ρ1

Multiple 
Measures of 

Particle B
~ Matrix ρ2

Path-A

Path-B

Interaction with environment along 
Path-B drives an averaging of the 
matrix ρ2

Leading to reduced Fidelity

There are formal relationships between 
coherence and fidelity8, 9

R > received flux

Uncertainty effects4,5

Clock precision6

Scattering

Gravity?
Other sources?
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5. Gambini R, Porto R and Pullin J, Phys. Rev. Lett. 93 240401 (2004)
6. Altepeter, JB, Jeffrey, ER, and Kwiat, PG, Photonic State Tomography
7. Liu, C.L., Zhang, DJ., Yu, XD. et al. Quantum Inf Process 16: 198. 
(2017)
8. Streltsov, A, et al, Physical Review Letters 115, 020403 (2015) 
9. Anastopoulos and B L Hu, Class. Quantum Grav. 30 165007 (2013)



Experimental Setup
Reference 11:  Ralph, TC and Pienaar, J, New Journal of Physics, 
16 085008 (2014)

11DEEP SPACE GATEWAY CONCEPT SCIENCE WORKSHOP | FEBRUARY 27-MARCH 1, 2018

Space and time like separated detectors collect 
entangled particles.  The detectors are at 
different Gravitational Potential Energies.

Could there be a measurable de-coherence of 
the correlation (C) between the two detectors?



Models for Gravity-Induced 
Quantum Decoherence
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Θ: “textures of 
spacetime” 9
The underlying 
configuration of 
spacetime – has not
been measured

Propagate using Hamiltonian containing gravitational and
vacuum interactions; treat as linearized perturbations from weak
gravitational fields and relative velocity << c

Θ: 0 à no decoherence due to gravity; “Minkowski spacetime is the ground state of 
quantum gravity”
Θ > 0 à “Gravity is a hydrodynamic theory”, coarse-grained structure of arbitrary length 
scale may exist in spacetime

9. Anastopoulos and B L Hu, Class. Quantum Grav. 30 165007 (2013)



Models for Gravity-Induced 
Decoherence
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• Deutsch’s theory10: curved spacetime may contain 
closed time like lines

– A particle can interact with a future version of itself

• Ralph and Pienaar developed framework to 
measure resultant decoherence sending entangled 
light ‘along the well’ in the Schwarzschild metric11

Δ! = 𝑡"# − 𝑡"$ + 𝜏$ − 𝜏# ≈ 𝑀𝑙𝑛 +𝑥# 𝑥$

10. Deutsch, D, Physical Review D, 44, 10  (1991)
11. Ralph, TC and Pienaar, J, New Journal of Physics, 16 085008 (2014)



Transitioning from point-like Earth 
to the N-Body system
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First Order Evaluation:
• Linear sum of point-like sources (Earth-Sun-Moon-Jupiter)
• Flying qubit is in its own inertial frame
• An independent test of the Equivalence Principle

Open question: how do points of inflection in the field line of sight affect the mechanism of decoherence?

Small-sat synergy
Alternative location for source or receiver to 
expand experimental possibilities



N-Body System
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Next  Order Evaluation:
• Rework integration outside of “event formalism”

symmetric-shell framework
• N-body numerical solution will have off-diagonal terms
• Potential to test alternative gravity theories

• Replace earth Schwarzschild radius with n-body
effective Schwarzschild radius per PPN12

[13]

12. B Breen J. Phys. A: Math. Nucl. Gen. 6 150 (1973)
13. https://ssd.jpl.nasa.gov/horizons.cgi

https://ssd.jpl.nasa.gov/horizons.cgi


• Place empirical bound on superluminality
– LOP-G to Earth link can expand bound from ~ 106 to 1012

• Test of strong form equivalence principle
– Preferred orbits of LOP-G exhibit large modulation in angular momentum and 

gravitational potential energy
• Long range Bell test

– Eliminate causality loophole in testing

• Probe coupling between gravity and quantum states
– Test beyond “turning point” from 1-body to N-body spacetime
– Does spacetime “texture” have sign?

• Crew Interactions
– Eliminate freedom of choice loophole

Science Goals
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System Model for deep space 
quantum optics
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𝑁! = 𝑁" 𝜂"𝜂!𝜂#𝜂$ $ 𝑆%!" $ 𝑆&'$ 𝑆&(!! $ 𝑆)*" $ 𝑆'+ $ 𝑆!),../" $ 𝑆01 $
∆𝐹
∆𝑓 $

𝑇
𝜔!𝜎2(𝑇)

$ 𝜂)3)
Strehl Efficiencies
• 𝑆!!" : Propagation turbulence ~ exp(-Rytov2)
• 𝑆"# : Thermal Blooming ~ 1 (<1 for use of bright beacons)
• 𝑆"$%% : Shear flow around aperture ~ 1 (<1 for airborne)
• 𝑆&'( : Atmospheric losses ~ exp(-αL)
• 𝑆#) : Loss due to imperfect Beam Quality ~ BQ-1

• 𝑆%&*.,-( : Pointing jitter of transmitter ~ [1+π/2(σjit/φDL)2]
• 𝑆./ : Finite A.O. loop bandwidth ~ exp(- (fg/fAO).5)

Frequency and Time Filtering 
Efficiencies
• ΔF/Δf: ratio of Rx filter bandwidth to 

spectral bandwidth of entangled photons
• Product of repetition frequency and Alan 

variance @ T must be less than T to 
maintain time synchronization

Basic Link Budget
• Nr : # Counts/Pulse 

received
• Nt : # Photons/Pulse at 

source
• ηt : transmitter gain
• ηr : receiver gain
• ηL : diffraction loss
• ηL : detector efficiency

Amount of signal dedicated to 
circumventing eavesdroppers

𝑁45/,) =
𝒲Δ𝐹
𝐸675"54

𝜆8

𝐴!*
+ 𝑁"

Δ𝐹
Δ𝑓 $ 𝐸𝑅 + 𝑇 $ 𝑁9:!;

Noise Flux
• W : background radiance
• Ephoton : energy per photon
• Arx : physical area of receiver 

aperture
• ER : source extinction ratio
• Ndark : dark count rate of 

[14]

14.       Perram et al, Laser Weapon Systems, Chapter 8, DEPS (2010); &
Gagliardi & Karp, Optical Communications, 2nd Ed., Wiley (1995)

[14]

Proposed and planned work on small-
satellite quantum communication will 

improve many of these parameters



Basic Link Budget:  Maximum Distance 
for Repeater-Free Quantum Communication to Earth
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Noise dominates 
signal at 0.01 
AU distance

(mean Earth-
Moon Distance 
~ .0026AU)

[16]: JPL large area 
ground receivers for 
deep space optical 
communication

15. arXiv: 1804.06839, 
https://www.nasa.gov/mission_pages/tdm/lcrd/overview.html

16. Charles, JR, Hoppe, DJ, and Sehic, A; International 
Conference on Space Optical Systems and Applications 
(2011)

https://www.nasa.gov/mission_pages/tdm/lcrd/overview.html


Time and Frequency Filtering
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To take advantage of state of the art
detectors, precision timing is required
to synchronize transmitter and
receivers. TWTT or other protocols
may be used.

Frequency and Bandwidth 
Constraints

ΔF/Δf ≤ 1 
2Δf ≤ frep

[17]

17. arXiv: 1804.06839



Parametric Performance Simulation
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• We do not know if quantum coherence is
coupled to gravity

• We do not know if there is fine structure or
texture in curved spacetime

• We do not know if time forms closed loops in
the presence of mass

• We do not know if wavefunction collapse is
‘faster’ than 106 x speed of light [19]

• Addressing these questions experimentally
will open new doors for fundamental
physics, and influence the practical design
of planned quantum communication
networks and satellite links

• Earth-orbiting missions to distribute entangled
photon pairs to two different gravitational
potentials could validate existence of this type
of coupling

• Moon-orbiting missions will
unambiguously determine the detailed
nature of the coupling; test the
equivalence principle; and potentially test
alternative metric theories

Deep Space Quantum Link

21 [18]
18. https://images.nasa.gov/details-as11-44-6551.html
19. B. Cocciaro, J. Phys: Conf Ser. 626 012054 (2015)

https://images.nasa.gov/details-as11-44-6551.html
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